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Section 9.9 Representation of Functions by Power Series

In this section, we will consider a few interesting techniques that will allow us to find a power series that represents a given function. In particular, we will focus on using the formula for the sum of a convergent geometric series to define a power series representation of a particular function. If needed we can move the center of the series, we can perform algebraic operations with a series, or combinations of series, or we can use calculus based operations like differentiation, or integration to create a particular series representation of a given function.

From Section 9.2, we can recall the following theorem:
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Ex. 1:  If we let  and  , the geometric series sum formula gives us a power series representation for  centered at . 




That is, , for . This series converges absolutely on .

















We will use this geometric power series sum formula to develop many other representations of functions by manipulating values of , , and .


Ex. 2:  Use the geometric series sum formula to represent  as a power series centered at , and find the domain of this power series function.




When we change the center of this power series, we should see , which will show the new center at .  Also, we will be able to find a corresponding change in the domain of the power series representation, since we will be moving the center of the previous interval of convergence, .





































More Ex. 2:
















































Ex. 3:  Use the geometric series sum formula to represent  as a power series centered at , and find the interval of convergence (domain) of this power series function.










































More Ex. 3:
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NOTE: 

  - For simplicity, the properties are stated for series centered at .  
  - These operations can change the interval of convergence.
  - When two series are summed, the interval of convergence for the sum is the intersection of the intervals of convergence of two original series.



Ex. 4:  Use the geometric series sum formula to represent  as a power series centered at , and find the interval of convergence (domain) of this power series function.













More Ex. 4:














































Still More Ex. 4:














































Even More Ex. 4:















































Ex. 5:  Use the geometric series sum formula to represent  as a power series centered at , and find the interval of convergence (domain) of this power series function.











































More Ex. 5:


















































Still More Ex. 5:




















































Ex. 6:  Use the geometric series sum formula to represent  as a power series centered at , and find the interval of convergence (domain) of this power series function.














































More Ex. 6:


















































Still More Ex. 6:
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THEOREM 9.6 Convergence of a Geometric Series

A geometric series with ratio r diverges if || = 1.1f 0 < |r| < 1, then the
series converges to the sum
=

ar'" =
=3 1—r

, 0<|r| <1

n
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Operations with Power Series
Let f(x) = 2 a,x" and g(x) = = b, x".
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f{x)=arctan(x)
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